Multiplicative Invariants and the Finite Co‐Hopfian Property

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Cohen-macaulay Property of Multiplicative Invariants

We investigate the Cohen-Macaulay property for rings of invariants under multiplicative actions of a finite group G. By definition, these are G-actions on Laurent polynomial algebras k[x 1 , . . . , x ±1 n ] that stabilize the multiplicative group consisting of all monomials in the variables xi. For the most part, we concentrate on the case where the base ring k is Z. Our main result states tha...

متن کامل

Multiplicative Invariants and Semigroup Algebras

Let G be a finite group acting by automorphism on a lattice A, and hence on the group algebra S = k[A]. The algebra of G-invariants in S is called an algebra of multiplicative invariants. We present an explicit version of a result of Farkas stating that multiplicative invariants of finite reflection groups are semigroup algebras.

متن کامل

Class Groups of Multiplicative Invariants

Let G be a nite subgroup of GL d (Z). Then G acts on the Laurent polynomial ring kX 1 1 d ] over the eld k via the natural G-action on the multiplicative group generated by the variables X 1 ; : : : ; X d (= Z d). We show that the class group of the ring of invariants of this action is isomorphic to Hom(G=N;k) H 1 (G=D; (Z d) D), where N denotes the subgroup of G that is generated by all reeect...

متن کامل

comparing the second multiplicative zagreb coindex with some graph invariants

‎the second multiplicative zagreb coindex of a simple graph $g$ is‎ ‎defined as‎: ‎$${overline{pi{}}}_2left(gright)=prod_{uvnotin{}e(g)}d_gleft(uright)d_gleft(vright),$$‎ ‎where $d_gleft(uright)$ denotes the degree of the vertex $u$ of‎ ‎$g$‎. ‎in this paper‎, ‎we compare $overline{{pi}}_2$-index with‎ ‎some well-known graph invariants such as the wiener index‎, ‎schultz‎ ‎index‎, ‎eccentric co...

متن کامل

Multiplicative Finite Difference Methods

Based on multiplicative calculus, the finite difference schemes for the numerical solution of multiplicative differential equations and Volterra differential equations are presented. Sample problems were solved using these new approaches.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematika

سال: 2009

ISSN: 0025-5793,2041-7942

DOI: 10.1112/s0025579300000978